어쩌다통계

    모델 배포 사례 1

    [도서 리뷰] Introducing MLOps, MLOps 도입가이드 part1

    이 글이 도움되셨다면 광고 클릭 부탁드립니다 : ) ML모델 관련 구글링을 하다 보면 DevOps와 비슷한 MLOps라는 용어를 손쉽게 접할 수 있습니다. 저는 처음에는 당장 필요하지 않아 보여 관심을 두지 않았는데, 회사에서 모델을 배포/서빙을 하거나 개인 프로젝트를 하더라도 API를 만들어 서비스가 가능한 모델을 만들려면 MLOps에 대한 배경지식이 필요하게 됩니다. 본 포스팅은 Introducing MLOps, MLOps 도입 가이드를 읽으며 MLOps를 구상하는데 도움이 되는 부분을 정리하였습니다. https://product.kyobobook.co.kr/detail/S000001810502 MLOps 도입 가이드 | 데이터이쿠 - 교보문고 MLOps 도입 가이드 | MLOps의 개념부터 도입과 ..

    Review/도서 리뷰 2022.10.27
    이전
    1
    다음
    더보기
    • Data Science
      • Algorithm
      • Programming
        • Python
        • R
        • Others
      • Review
        • 논문 리뷰
        • 도서 리뷰
        • 대회 리뷰

    Tag

    쿠버네티스, Introducing MLOps, MLOps 도입가이드, python, 2021, fbprophet, 2022, 2024, PROPHET, mlops, 모델 배포, 모델 서빙, 2023, 차원축소, 이상치 탐지, 2020, PyOD, 시계열 예측, bentoml, anomaly detection,

    최근글과 인기글

    • 최근글
    • 인기글

    방문자수Total

    • Today :
    • Yesterday :

    Copyright © Kakao Corp. All rights reserved.

    • SOTA
    • Dacon
    • Kaggle
    • 모두의MLOps
    • github_anomaly-detection-resou…
    • github_awesome-TS-anomaly-dete…
    • github_SOTA of Anomaly detecti…
    • github_Weekly Arxiv
    • github_DeepOD

    티스토리툴바